

Impact of water and oil contents in ethanol applied to ORC for exhaust heat recovery in heavy duty trucks

Speaker: Rémi DACCORD - EXOES, CTO – CIPO Co-authors: Julien MELIS, Antoine DARMEDRU

> 4th Engine ORC Consortium Workshop November 15 - 17, Detroit, Michigan

EXOES at a glance

References:

EXOES at a glance

Demo vehicle tested in 2017

thanks to a collaborative project with FCM and Volvo

ORC experience

• Expanders development for Ethanol working fluid

2018: Efficiency

2016: Cost & truck integration

2015: Lightweight & reliability

2014: Scale-up to truck size

2013 : swashplate architecture & lubricant development

• Inlet poppet valves, and exhaust ports and valves

EXOEZ

Expander Datasheet

	EVE-T2	
Speed range	1,000 - 4,530 RPM	
Shaft power range	<12 kW	
Eff. Is. efficiency range	Тур. 55 - 65%	
Size	< D200xL200mm	
Weight without coupling	15kg	
Oil circulation rate	Тур. 10%	
Outlet pressures	1 - 4barA	
Inlet pressures	<40 barA	
Nominal pressure ratio	15 – 20 for ethanol	
Nominal gear ratio	1.5 – 2.5 for trucks	
Transmission	Freewheel	
Bypass valve	Integrated	

186mm

Future scroll expander

• Compliant Scroll – Volume ratio 4.3 – Capacity 135cm³

	EVE-T2 - piston	EVE-T3 - scroll
Speed range (RPM)	1,000 - 4,530	1,000 - 6,000
Shaft power range	<12 kW	<15 kW
Eff. Is. efficiency range	Тур. 55 - 65%	Тур. 55 - 75%
Size	< D200xL200mm	< D220xL130mm
Weight w/o coupling	15kg	18kg
Oil circulation rate	Тур. 10%	Тур. 5%

EXOZE

Efficiency forecast

@ 2000rpm, 1bar outlet, 30°C superheat (EVE T1 and T2)
@ 3600rpm, 1bar outlet, 20°C superheat (Scroll - Ethanol)
@ 3600rpm, 2.2bar outlet, 20°C superheat (Scroll - Cyclopen)

Pump datasheet

	HPP – T1	
Flow	45 – 600 L/h	
Elec. power range	<1.2 kW	
Eff. Is. efficiency range	<65%	
Size	<d130xl210mm< td=""></d130xl210mm<>	
Weight	<4kg	
NPSHr	~300mbar	
Inlet pressures	1 - 4barA	
Outlet pressures	1 - 40 barA	
Additional functions	100 μm inlet filter 10 μm outlet filter Relief valve 43 barG	
Sensors	In & Out pressures Temperature	
Motor	24 Vdc – CAN bus	

Working fluid impact

- OCR impacts:
 - Pump consumption
 - Heat transfer coefficient
 - Expander performance/wear
- Water content in ethanol impacts:
 - Pump consumption
 - Materials corrosion. Possibility to introduce aluminum parts...
 - ... TCO. Aluminum exchanger instead of SS will largely reduce the cost of the system.

\rightarrow Our target: quantify the impacts

Test rig description

Test plan

• Test plan: 108 measurement points

Fixed parameters	Value
Expander inlet superheat [°C]	30 (±2)
Expander outlet pressure [barA]	1.5 (±0.02)
Evaporator inlet temperature (working fluid side) [°C]	60 (±3)
Moving parameters	Value
Expander speed [RPM]	1,600 ; 2,400 ; 3,200 (±5)
Oil mass fraction [%]	7 ; 12 ; 17 (±2)
Water mass fraction in Ethanol [%]	4.5 ; 10 ; 15 (±2)
Evaporator inlet conditions (hot gas side) Point 1 Point 2 Point 3 Point 4	142g/s ; 297°C 182g/s ; 330°C 226g/s ; 354°C 293g/s ; 374°C

- Measurements in lab preliminarily to test bench.
- PAG oil miscible with ethanol and water.
- Linear behavior with T prevalidated, impact of pressure neglected (Coriolis on LP side).

•
$$\rho_{oil}$$
 and ρ_{eth} with lab tests
bil $\rightarrow x_{oil}$ during tests

 ho_{eth}

OCR real time measurement

• Working fluid sampling during the tests

Fluid	xoil Real Time	xoil sampling	Error xoil
E95.5W4.5	19.1%	20%	0.9%
E95.5W4.5	8.5%	8.3%	-0.2%
E90W10	9.1%	7.4%	-1.7%
E90W10	11.7%	10.4%	-1.3%
E85W15	19%	16.6%	-2.4%
E85W15	16.9%	14.9%	-2.0%
E85W15	13.3%	11.7%	-1.6%
E85W15	8.2%	5.9%	-2.3%

Performance criteria

• Cycle efficiency =
$$\frac{W_{shaft} - W_{pp}}{\dot{Q}_{hf_su_ev}} = \frac{Shaft power - Pump power}{Evaporator available power}$$

• Evaporator efficiency = $\frac{\dot{Q}_{hf_ev}}{\dot{Q}_{hf_ev}} = \frac{Hot gases recovered power}{Evaporator efficiency}$

Evaporator efficiency = $\frac{\langle nf_{ev} \rangle}{\dot{Q}_{hf_{su_{ev}}}} = \frac{\pi \delta c gases recovered power}{Evaporator available power}$

Where:
$$\dot{W}_{pp} = \frac{\dot{m}_{wf}}{\rho_{wf_su_pp}} \cdot \frac{\left(P_{wf_ex_pp} - P_{wf_su_pp}\right)}{\eta_{pp}}$$
 Assumption η_{is} 36%

$$\dot{Q}_{hf_su_ev} = \dot{m}_{hf_su_ev} \cdot \left(Cp_{hf_su_ev} \cdot T_{hf_su_ev} - Cp_{hf(T_{wf_su_ev})} \cdot T_{wf_su_ev} \right)$$

$$\dot{Q}_{hf_ev} = \dot{m}_{hf_su_ev} \cdot \left(Cp_{hf_su_ev} \cdot T_{hf_su_ev} - Cp_{hf_ex_ev} \cdot T_{hf_ex_ev} \right)$$

OCR impact for E95.5W4.5

ΞX

OCR impact for E95.5W4.5

- Cycle efficiency and fuel savings decreases with OCR.
- Shaft power loss and pump power increases are predominant.
- Same trend for E90W10.

OCR impact for E85W15

 Contrarily to E95.5W4.5 and E90W10, the cycle efficiency remains quite independent from OCR for E85W15. Water content impact

• Performance at 2,400rpm 182g/s 330°C

Water content impact

- Cycle efficiency decreases with OCR for E95.5 and E90.
- For E85, efficiency is ≈independent from OCR and lower than for E95.5 and E90 except for high OCR.
- E95.5 and E90 show similar efficiencies and same trends.

Conclusion

- OCR impact (fixed water content):
 - The lower the OCR, the higher the fuel savings.
 - Except for E85W15 (no dependency).
- Water content impact:
 - For realistic OCR (≈ 10%), ethanol with low water content provides higher fuel savings...
 - ... but high water content could allow the introduction of aluminum parts on the low pressure side (eg the condenser).
 - The balance between efficiency and cost must thus be checked to select the best water content.

Conclusion

