

Improved scroll expander model for exhaust heat recovery

Speaker: Antoine DARMEDRU Co-authors: Thibault VAN'T VEER, Rémi DACCORD EXOES

5th Engine ORC Consortium Workshop September 26th – 28th 2018, Lyon France at a glance

EXOES

Latest project

Demo vehicle tested in 2017 (shown at EORCC last year) thanks to a collaborative project with Faurecia and Renault Trucks

Component development

EXO

Expander model description

Literature

- Presentation based on EVE-T 3 design
- Literature:
 - University of Liège: Vincent Lemort, Leonardo Cutini, Arnaud Legros
 - Ian Bell, Thesis [1]
 - J. E. McCullough [2]

EVE-T3 Datasheet

Speed range (RPM)	1,000 - 6,000
Shaft power range	<15 kW
Eff. Is. efficiency range	Тур. 55 - 75%
Size	< D220xL130mm
Weight w/o coupling	18kg
Working fluid	Ethanol Cyclopentane
Oil circulation rate	Тур. 5%
Expansion ratio	4,30 -
Displacement	134 сс

Scroll expander modelling Improvement of a scroll model

- Original model from University of Liège:
 Matlab based model (linked with Coolprop)
- The scroll model includes:
 - Geometry description, incl. tip & inlet port
 - Conservation of energy and mass
 - Leakage
 - Mechanical model
 - Heat transfers
- We added / improved:
 - Leakages, mechanics and heat transfers
 - "double pocket" description

Geometry description

Pocket volume calculation

7

• Chamber volume calculated according to [1]

Flank leakages Tip seal & flank leakages

• Flank leakages: nozzle equation (perfect gas)

$$\dot{M}_{flk} = h_{flk} \cdot e_{leak} \sqrt{2P_h \rho_h \frac{\gamma}{\gamma - 1} \left[\left(\frac{P_{thr}}{P_h}\right)^{\frac{2}{\gamma}} - \left(\frac{P_{thr}}{P_h}\right)^{\frac{\gamma + 1}{\gamma}} \right]}$$

Tip seal leakages Tip seal & flank leakages

Tip seal leakages

10

Mechanical model Mandatory for a scroll design

- Loads on the mobile scroll calculation [1]
- Loads on the bearings
- Heat losses correlations

Heat transfer

- Heat transfer in the control volume [1]
 - Between the fluid and the scroll wrap and the base plate.
 - Linear drop of wall temperature from inlet to exhaust
 - Base plate temperature calculated function of wall temperature
- Heat transfers in the housing [1]
 - Between fluid exhaust and supply, spirals, housing, ambiant air
 - Lumped housing temperature
 - Integration of the energy of the mechanical losses

$$\dot{Q}_{spirals} - \dot{Q}_{amb} - \dot{W}_{loss} + \dot{Q}_{ex} + \dot{Q}_{su} = 0$$

Heat transfer representation

Simulation results

Scroll calculation for truck ethanol ORC

- Inputs:
 - Ethanol 95.5%wg
 - 3,600 rpm
 - 20°C Superheat
 - Exhaust press. 1 BarA
- Outputs:
 - Mechanical power
 - Mass flow
 - Isentropic efficiency

SCROLL NOSE TIP & INLET PORT OPTIMIZATION

- Accurate nose modeling to withstand mechanical stress
- Detailed leak model on the tip seal

Nose tip seal

Geometric decomposition

Why introducing this refinement ?

- Problem to be solved:
 - Dissymmetric chamber \rightarrow Supply process too optimistic
 - Vibrations

Supply port position @ 180°

Supply port position @ 240°

ΞX

Geometric decomposition

- Resolution proposition
 - Geo. decomposition of the first pocket
 - Central pocket at supply pressure

Double pocket model @330°

Simulation results

- Better design of supply process
- Pressure difference negligible if supply process well designed

- Ethanol 95.5%wg
- 3,600 rpm
- 20°C Superheat
- Supply press. 20 BarA
- Exhaust press. 1 BarA

Simulation results

- Better design of supply process
- Pressure difference negligible if supply process well designed

- Ethanol 95.5%wg
- 3,600 rpm
- 20°C Superheat
- Supply press. 20 BarA
- Exhaust press. 1 BarA

Simulation results

Impossibility to optimize the expander mass flow & mechanical power without double pocket model.

Conclusion

- Exoès developed a scroll expander model with double pocket decomposition which allows a:
 - Better supply process prediction
 - Better mass flow prediction / mechanical power prediction
- Coupling with FEA tool is mandatory for an efficient design
- Next step: Model calibration with experimental data

Conclusion

References

 $E \times O = =$

- [1] I. H. BELL, «Theoretical and experimental analysis of liquid flooded compression in scroll compressors» 2011.
- [2] J. E. McCullough, « Scroll Compressor development program » 1977

NRB: Needle Roller Bearing CRB: Cylindrical Roller Bearing TB: Thrust Bearing OB: Orbiting Bearing ro: orbiting radius

D: distance Ftg: Tangential force Frg: Radial force

ANNEXES

Scroll positions

Rotation angle: 0°

Rotation angle: 90°

Rotation angle: 180°

Rotation angle: 270°

Simulation results

• Volume repartition in the first chamber

Conservation of Energy and Mass Very standard description

– Mass conservation:

$$m_{i+1} = m_i + m_{su} + m_{ex} + m_{leaks}$$

– Energy conservation:

$$m_{i+1}$$
. $U_i = m_i$. $U_i + (m_{su} + m_{leak,i,su})$. $h_{su} + (m_{ex} + m_{leaks,i,ex})$. $h_i + Q_i - P$. dV

Mechanical model

Calculation results

- Ethanol 95.5%wg
- 3,600 rpm
- 20°C Superheat
- Psu: 20 BarA
- Pex: 1 BarA

