

3D thermal simulation of a buffer battery for an industrial fuel cell vehicle

GT conference Oct. 15th 2020

Author: Salim AOUALI

Speaker : Rémi DACCORD

e-Mersiv "why"

Our mission: accelerate EV transition thanks to high performance batteries

- Immersion cooling to reach very high C-rates
- Advanced BMS to enable higher safety and longer lifetime

e-Mersiv batteries to be used in BEVs and HEVs (including FCEVs):

- Whenever the Power to Energy ratio is higher than 3
- Whenever the ultra fast charging in less than 10 minutes is required
- Whenever conditions are severe: hot/cold weather and long lifetime

e-Mersiv in a nutshell

- > Joint Venture of:
 - **EXOES**, expert in thermal management systems for vehicles
 - Startec Development, expert in batteries and BMS
- > 2x locations in **Bordeaux** area
- > A task force of **50x people**
- ➤ Internal capabilities:
 - BMS, battery pack & cooling systems design
 - Manufacturing
 - Tests: full performance, abusive and aging
- Seasoned team
 - 20-year experience in Li-ion batteries
 - 11-year experience in fluids used for thermal management

Last achievements of the team

- ✓ Complete battery packs using different types of cells: form factors & electrochemistry: Li-Ion / Na-Ion / LTO...
- ✓ Complete BMS development and manufacturing
- ✓ High energy or high-power battery packs developed

Focus on Battery immersion cooling

A large variety of technologies

Criteria to make a choice:

- Cost
- Weight
- Cooling loop
- System performances
- Manufacturing process
- Etc.

Gap filler

Static bath

Spray

The cooling fluid

- 2x categories : Oils and refrigerants
- Some criteria are listed below to choose the right fluid after extensive tests:

Cost / kg	Density	Heat Transfer coefficient	Viscosity	Dielectric properties	GWP ODP	Water acceptance	Material compatibility
-----------	---------	---------------------------------	-----------	--------------------------	------------	---------------------	------------------------

Extract of potential fluid suppliers:

Immersion-cooled products under development

> 3x different products for 3x different markets

		details.	Peak C-rate ch. / disch.	Average C-rate	Densities At pack level	Cooling		
F F	Powerfull electric vehicles	230 Wh/Ldesigned for large batteriesCell-to-pack	10C / 10C	10C rms	130 Wh/kg 1,250 W/kg	Liquid		
	veriicies	Dielectric cooling loop <40°CNMC 21700 cells	Ex: Energy 2,15kWh Peak Power charge 21,5kW / discharge 21,5 kW					
	Hybrid or Full electric racing	800VDielectric cooling loop @60°C	40C / 100C	40C rms	80 Wh/kg 3,400 W/kg	Pumped-2- phase		
		- LCO Pouch cell	Best trade-off between energy and power densities Ex: Energy 2,15kWh Peak Power charge 86 kW / discharge 215 kW					
	Powerfull hybrid vehicles (incl. FCHEV)	30,000 CyclesAttractive TCOAir cooled possible,	40C / 40C	8C rms	30 Wh/kg 1,250 W/kg	Up to Pool boiling		
		or water loop @25°C - LTO prismatic cell	Best trade-off between densities and lifetime Ex: Energy 2,15kWh Peak Power charge 86 kW / discharge 86kW					

Simulation of a buffer battery for FCEVs

Use case: industrial FCEV

- > An industrial vehicle running 24h/7d
- > Equiped with a small fuel cell (FC)
- With repetitive power peaks (10x power of the FC)
- > Ratio of energy required on power is:
 - > 10C peak
 - > and 6C rms!

Stringent requirements on both Lifecycles & Thermal performances

SIMULATION CYCLE

The cell: LTO prismatic

- > LTO 23Ah 2.3V
- ightharpoonup LxlxH = 115x22x105 mm
- > 100 Wh/kg
- > Up to 20C rms
- > 1000A for 1sec
- > 15,000 cycles (EOL 80%, 25°C, 100% DOD)

Cooling options simulated

- > we defined the following scenarios for the cooling architecture :
- Cooling fluid inlet: 25°C
- > Ambient temperature : 25°C
- > Initial temperature : 25°C

Scenario	Cooling configuration
#0	No cooling
#1	Bottom cold plate
#2	2x lateral cold plates
#3	Full immersion

The cell model

Electrolyte

 $\lambda [W/m^2/K]$ $C_p [J/kg/K]$

Insulator

 $\lambda [W/m^2/K]$ $C_p [J/kg/K]$ $\rho [kg/m^3]$

The cell model details

2020 / e-Mersiv PROPERTY - CONF

The complete model

- > The system is simplified to a single cell
- The external heat transfer is modeled by a constant heat transfer coefficient h.
- > The busbar connection is neglected

The complete model

Domains:

- > Thermal domain (3D FE Thermal resolution)
- > Electrical domain (0D Joule heating calculation)

Electrical domain

☐ Transfer heat production result☐ Transfer back element temperature

3D cell result

(t = End of simulation)

Jellyroll Temperatures

T-Max
T-Average
T-Min

ScenarioCooling configuration#0NO COOLING#1BOTTOM#2LATERAL#3FULL IMMERSION

2020 / e-Mersiv PROPERTY - CONFID

JELLYROLL TEMPERATURE [°C]

Conclusion

Work done:

- > 3D thermal simulation of a battery cooled by immersion
- Benchmark with a battery cooled by water/glycol cold plates
- > Not presented: simulation of a thermal runaway propagation in both case

The appropriate cooling system was selected:

- Ability to simulate transient behavior with « normal » computers
 (only 16Go RAM full 3D CFD did not wort out early trials led to computer black out !)
- The module design was enriched thanks to the simulation sensitivty studies on parameters (intercell distance, flowrates, fluid viscosity, ...)
- Prior to do destructive tests, the thermal runaway behavior was checked

Thanks for your attention!

