High performance battery cooling by innovative immersion cooling systems

13th January 2021 | Battery Tech & Management Systems 2021 DigitalB. Hagemann, Thomas Kraft, Dr. Jasmin Schießl-Kerbeck, Dr. Achim Losch

Agenda

01	What drives BEV direct cooling
	Market trends, technology drivers, battery immersion cooling
02	Challenges of immersion cooling dielectric fluids
UZ I	Integration, efficiency, safety
02	Dielectric fluid development process
03	Formulation, simulation and testing
	FUCHS BluEV technology promise
U 4	FUCHS BluEV integrated solution portfolio

 O1 What drives BEV direct cooling Market trends, technology drivers, battery immersion cooling

01 Market trends **xEV** sales Europe + recent press releases

Electric cars to triple market share in Europe amid COVID-19, researchers say

France Hits Record 19.2% EV Share In December — Up Almost 6× Year On Year

UK's EV Market Share Jumps To 16% In November — **Overtaking Diesel**

EV sales triple in Germany, disrupting market with 11% share

01 Market trends **Dynamics in published consulting agencies studies**

15

FEV Consulting GmbH, January 2016

C by FEV - all rights reserved. Confidential - no passing on to third parties | 3

01 Technology driver Ultra Fast Charging Challenge

- High energy density
- Up to 50kW dissipation loss!
- Safety optimization
- Maximum efficiency
- Condition monitoring requires homogeneous cell temperature

800V 5 min / 100km

1000 km range/h

3C = 270 kW

22,5 min / 5 to 80% SOC

01 Battery Immersion Cooling How and why?

- Battery immersed with cooling fluid
- Insulating dielectric fluid is derived from transformer fluid
- Highest heat transfer capability
- Homogeneous battery cell
 temperature
- Increased safety

01 Battery immersion cooling FUCHS BEV applications

E-Drive CV Joint grease

Compressor oil for heatpump / air condition

Electric steering greases

Low noise grease for ventilators and pumps

Drawing oils for copperwire

Bearing and sealing greases for E-Motors

Cleaners in battery production processes

Forming oils for battery cell cups or battery cases

Corrosion protection for battery housing

Thermal fluid for battery

Challenges of immersion cooling dielectric fluids Integration, safety, efficiency

FUCHS BluEV 02 Integration Multiple temperature levels in BEV components

	Battery	 Thermal management for performance and lifetime Heating and cooling 	
	Powertrain Electronics & E-Motor	 Cooling only High gradients, intermittent 	
MAX MAX Nuc	Cabin	 Cooling and heating ICE waste heat non existent 	
	On- board electronics	Cooling onlyHotspots	

Key challenges

Operating temp (°C)

FUCHS BluEV 02 Integration Battery thermal management solutions

Туре	Air	Water-Glycol	Refrigerants
Description	Direct cooling Forced convection by airflow around cells	Indirect cooling through pipe and heat exchanger system	Indirect cooling by expansion of refrigerant in heat exchanger system
Advantages	Low cost of system	Fluid already available at car production sites Low cost of fluid	High heat transfer rates
Disadvantages	Low specific heat capacity of air = low efficiency Loud High space demands	Conductive fluid in high voltage environment needs higher safety efforts Smaller contact surface to cells = low efficiency	High Power and high pressures required Only cooling, separate heating system required

Direct cooling forced convection by fluid flow around cells

No additional heat exchanger system inside battery needed Higher energy density

Highest efficiency and cooling capability

Fluid either environmentally harmful, expensive and heavy or flammable

Higher fluid volume

02 Integration Thermal management media for direct cooling of batteries

Coolant	Direct cooling	Cost	Energy efficiency	Heat transfer	Electrical conductivity	Fire resistance	Weight	Ecology
Water / Glycol	Х	++	++	++		+	-	++
Hydro Fluoro Ethers	۲ ۵۵		+	+	++	++		
Heat Transfer Oils	is.	+		+	+	-	+	+
Transformer Oils	۲ ۵۵	+	-	+	++	0	+	+
Dielectric Thermal Fluids, designed for Batteries	تهـ	+	+	+	++	Ο	+	+

FUCHS BluEV **02** Safety

- Low flammability
- Robust and homogeneous cooling, no thermal peaks
- Effective cooling results in less risk of thermal runaway
- New China GB/T standard 38031 for BEV safety

02 Efficiency Heat transfer Comparison of thermal fluids using efficiency indices

Thermal fluid

- thermal conductivity
- heat capacity
- density
- viscosity

System and operation

- design, geometry, operation parameters
- cooling surface area A
- temperature difference ΔT
- flow regime (laminar/turbulent)
- forced convection / 2-phase
- materials, surfaces, coatings, ...

efficiency indices

02 Efficiency Heat transfer models laminar and turbulent flow

$$M = \frac{\rho^a \cdot \lambda^b \cdot C_p^{\ c}}{\mu^d}$$

efficiency index*

heat conductivity

dynamic viscosity

specific heat capacity

density

$$M_{1} = \frac{\rho^{0.33} \cdot \lambda^{0.67} \cdot C_{p}^{0.33}}{\mu^{0.17}} \quad \begin{array}{l} \text{simple r} \\ \text{alaminar} \\ \text{pumpler} \\ \text{alaminar} \\ \text{pumpler} \\ \text{advance} \\ \text{burger} \\ \text{advance} \\ \text{burger} \\ \text{advance} \\ \text{burger} \\ \text{bur$$

* also described as Mouromtseff number

1 D.B. Tuckerman: Heat-Transfer Microstructures for Integrated Circuits, 1984 2 R.E. Simons: Comparing Heat Transfer Rates of Liquid Coolants, 2006

Μ

ρ

λ

μ

CP

model flow nergy neglected

ed model ¹ flow

Immersion battery cooling

ed model² nt flow

03 Dielectric fluid development process Formulation, simulation and testing

03 Formulation Hydrocarbon based dielectric fluids offer best overall performance

I 17

Material compatibility

03 Formulation **Products made to measure: Comparison of thermal fluids**

5	
0,808	
0,154	
0.4	

03 Testing Comparison of thermal fluid formulation strategies

- Hermetic module casing
- Battery cells immersed in dielectric liquid
- Circulating cooling liquid, controlled in temperature / flow / pressure
- Specific flow pattern around battery cells, flow channels arranged in parallel

Content courtesy of our partner $\equiv x 0 \equiv \equiv$

03 Testing Comparison of thermal fluid formulation strategies

- U-shape flow:
- Enhanced thermal and safety performances

03 Simulation **Comparison of thermal fluid formulation strategies**

- Flow simulation that combining heating and flow calculation
- Speeds and pressure pattern of the flow in-between prismatic cells in immersion cooling

03 Testing Comparison of thermal fluid formulation strategies

- EXOES designed a module made of dummy cells
- 1x actual LTO cell (Toshiba SCiB 10Ah)
- Surrounded by 35x dummy heating cells
- 26x temperature sensors enclosed

Content courtesy of our partner $\equiv \times 0 \equiv \equiv$

03 Formulation Testing: Material compatibility (Construction polymers, sealants)

Construction	polymers
(examples)	
acc. to ASTM	D3455

Polycarbonate (PC)

Polyphenylene sulfide (PPS)

Polyamide - Polycaprolactam (PA6)

Polybutylene terephthalate/ Acrylonitrile styrene acrylate (PBT/ASA)

Sealants (examples) acc. to ISO 1817: 2015-02	Tested pro (examples	
Fluorocarbon rubber (FKM)	Shore D hare hardness	
Alkyl acrylate copolymer (ACM)		
Hydrogenated acrylonitrile butadiene	Strength	
rubber (HNBR)	Strain at stre	
Ethylene acrylic rubber (AEM)	Stress at bre	

123

operties

dness / Ball intendation

ength

ak

Strain at break

04 FUCHS global footprint Covering all applications and regions

04 FUCHS global footprint Covering all applications and regions

Stefan Fuchs, Chairman of the Board

We have relied on continuity, reliability and proximity – for more than 85 years.«

04 FUCHS global footprint FUCHS PETROLUB SE at a glance

The Fuchs family holds **55%** of ordinary shares

A full range of over

10,000

lubricants and related specialties

01 FUCHS BluEV product line Customized 360-degree solutions

04 FUCHS global footprint Covering all applications: BEV product portfolio

Contact grease for electric connections **Coolant for power**

electronics

E-Drive oil for E-Motor and gearbox

Axle grease for high torque

Products, which are needed independently from propulsion method are not shown

Corrosion inhibitor for battery housing **Battery** coolant

Compressor oil for heat pump / air condition

Grease for E-Motor

04 FUCHS global footprint Covering all applications: HYBRID product portfolio

New generation engine oils for downsized hybrid engines

Compressor oil for heat pump / air condition

Grease for belt tensioner

Grease for starter / generator

Products, which are needed independently from propulsion method are not shown

E-Drive Oil for Hybrid gearbox

Battery Coolant Corrosion inhibitor for battery housing Axle grease for high torque / low temp

Contact grease for electric connections

E-Motor bearing grease

Thank you for your attention.

STREEM

