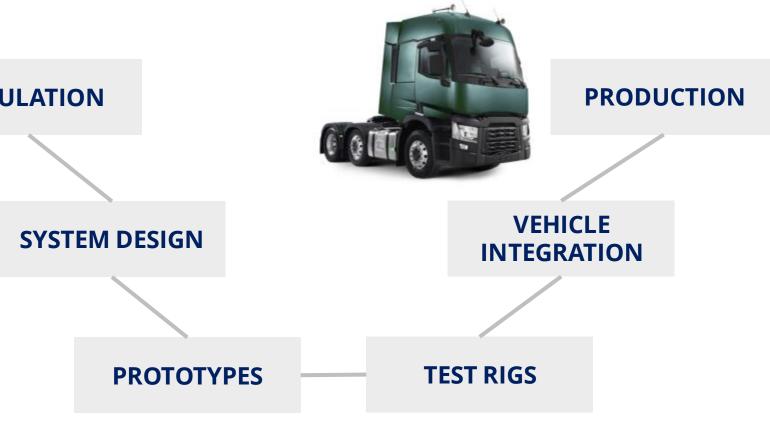


BE READYfor the future_

EXOÈS ENGINEERING

- Improves powertrains
- Reduces emissions


OUR SKILLS

- Thermal management
- Fluid transfers

FROM CONCEPT TO PRODUCTION

SCOPE and USPs_

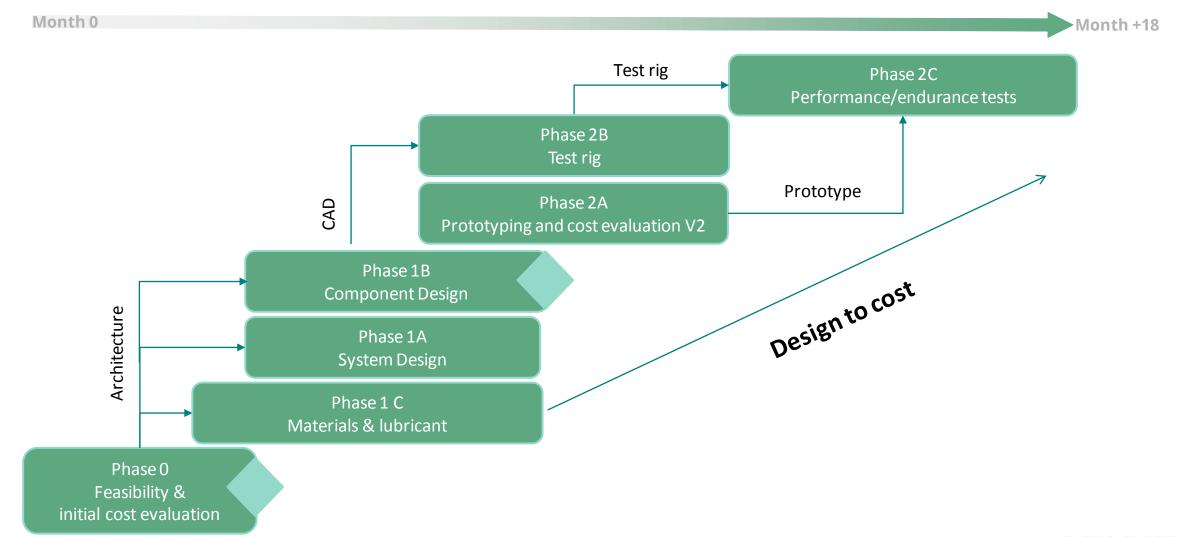
OUR USPs

- Customer centric
- Risk management oriented
- Development time shortened

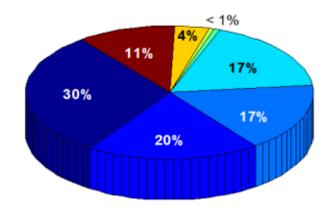
REFERENCES_

Our experts has a thorough experience in the automotive and compressor industry and come from the following companies:

A highly seasoned TEAM

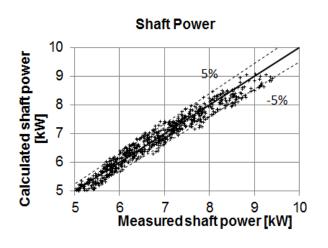

A solid experience in **product and system** development acquired in ORCs for trucks since 2009:

- Piston best-in-class expander developed from concept to B sample – 10 patents
- Solid system experience more than 10 complete ORC systems developed for 7 customers
- Joined vehicle integration workshop with major OEMs and tier ones


SYSTEM ENGINEERING & product development_

EXOÈS PROCESS from concept to A samples

Simulation_


Friction losses repartition

SIMULATION SKILLS

- Refprop database for fluids
- Exergy and energy balance analysis
- CFD
- FEA
- Test data post processing

Simulation

EXAMPLE OF OUR OWN MATLAB MODELS

- Swashplate Piston expander: calibrated 1D
- Scroll expander: calibrated 1D
- Crankshaft piston expander 1D
- Piston pumps 0D
- Gear pumps 0D
- ORC cycle 0D
- Evaporator 1D dynamics

COMPONENTdesign & prototyping_

DESIGN SKILLS

- Functional analysis
- FMEA
- Value analysis
- Cost evaluation
- Sourcing more than 200 suppliers

COMPONENTdesign & prototyping_

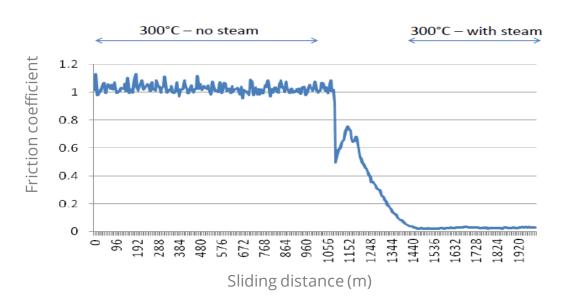
EXAMPLE OF PROTOTYPES REALIZED FROM SCRATCH:

- Single cylinder expander
- Swashplate piston expander
- Valvetrain design
- Piston pump
- Internal gear pump
- External gear pump
- Scroll expander
- Tube-in-shell evaporator
- Tube-in-tube evaporator

MATERIAL & lubricant_

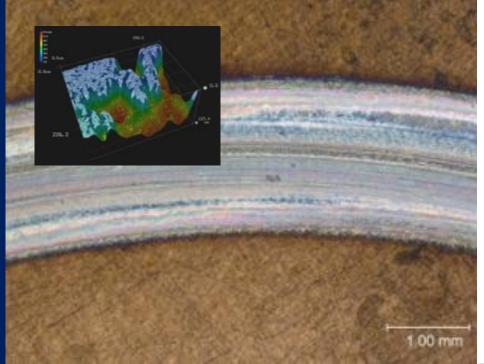
- Fluid design
- Tribology & wear in extreme conditions
- Fluid ageing
- Material compatibility
- Cost evaluation

Tribometer



- Corrosion tests in 3 autoclaves
- Compatibility tests for polymers and elastomers
- Thermal stability

Tribology_



PROBLEM SOLVING PROCESS

- Screening the state-of-the art resulting to a first material selection.
- Experimental determination of the most promising material couples.
- Wear rate assessment done on tribometers and organ test rigs.
- Failure analysis, Surface morphology: LOM, SEM, EDS, XPS, Raman, Stability of protective coatings

EXAMPLES ON FORMER PROJECTS

- Oil-free carbon ring: achieved wear rate in 180°C water vapor: 5.10⁻⁸mm³/N.m
- Oil-free carbon ring: achieved friction coefficient in 180°C ethanol vapor: 0.05
- 5,270 hours of autoclaves test to populate a database of material compatibility in ethanol vapor

Worn surface morphology

Tribology_

Vaportribometers -----

Tribologist **NET**_

EXPERTS

Dr. Mathias WoydtTribology
BAM – Germany

Dr. Jean-Louis LigierMechanics
Comatec - Switzerland

PARTNERS

SYSTEMS CONTROL and tests_

CONTROL DEVELOPMENT

• Failsafe PLC – EN ISO 13849

TESTS

- Tests in lab
- Tests on engine test cell
- Tests on roller test rigs

TURNKEY complete systems delivered

Rig type	Power	Fluid	Customers
WHR ORC coupled to an ICE (2L gasoline engine)	3 kWe	Ethanol	Valeo
Complete dynamic ORC system bench	15 kWe / 150 kWth	Ethanol	DANA LOSSI
Heat exchanger (ORC evaporator) test rig	150 kWth	Ethanol	TENNECO
Biomass CHP	3 Kwe	Water	ÖKOFEN OMUTFACE À GRANULIS
ORC test bench	3kWe	R245fa	UNIVERSITÉ de Liège
Solar ORC test rig – stand alone	12 kWe	R245fa	Schneider

From design **To** final product_

TEST CAPACITIESat Exoès lab_

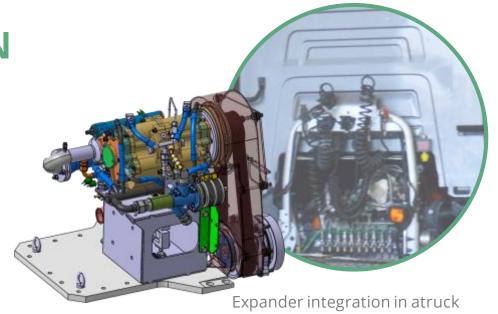
DYNAMIC TEST RIGS FOR POWERTRAIN AUXILIAIRIES

Flammable fluids accepted

Possibility to run dynamic drive cycles

Gaz burner	200 kW	200g/s	600°C
Electric brake	50 kW	5.500 R	RPM
Transient	5.000 RPM/s	350°C/s	200g/s ²

ENDURANCE TEST RIGS FOR COMPONENTS


	Automatic 24/7		
Heater	Heating oil 200 kW 300°C		
Electric brake	25 kW 6.000 RPM		

Vehicle integration workshops TOGETHER WITH CUSTOMERS_

SYSTEM INTEGRATION IN A VEHICLE

- CAD
- FEA and vibrations
- Prototyping
- Assembly
- Test analysis

A SOLID SCIENTIFIC BACKGROUND, with an international influence_

Rémi DACCORD,
 Exoès CTO speaker at ATZ, Germany

2016 - ETABerlin GERMANY
Rankine cycles, industrialisation challenges

2016 - FISITABusan SOUTHERN KOREA
Presentation of a waste heat

2016 - Paper published in Applied Energy

SOUVIER JL, KIENTZ & AI. "Experimental study of an oil-free steam piston expander for micro-combined heat and power systems", Applied Energy 169, 2016, pages 79, 709

2016 - EORCC

Belfast NORTHERN IRELAND Presentation of truck integration issues with EVE®, piston expander and exhaust waste recovery solution

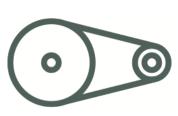
2015 - AORCC

Detroit USA
Presentation of a waste heat
recovery solution, for HGV

2014 - SAE

Detroit USA Presentation of a waste heat recovery solution for cars

2013 - ATZ


Ludwigsburg GERMANY
Presentation of a waste heat recove

2013 - ASME-ORC

Rotterdam NETHERLANDS
Presentation of a waste heat
recovery solution for cars

COMPONENTS

Compressors

Pumps

Valves

Expanders

Heat exchangers

EXOÈS, your partner for...

SYSTEMS

Heat pumps

Climate control systems

ORC systems

Fuel cell

