2021第四届全球新能源汽车热管理峰会 暨中国燃料电池汽车论坛 The 4th Global NEV Thermal Management Summit 2021 & China Fuel Cell Vehicle Forum 2021 2021年12月1日-3日 上海・中国 December 1-3, 2021 Shanghai • China

The end of range anxiety thanks to fast charging and immersion cooling in BEVs

NEV SHANGHAI December 1st-3rd 2021

Rémi Daccord | Wang Jun © NEV Copyright

30x people in Bordeaux simulating, prototyping and testing batteries cooled by immersion and much more...

Past battery developments

Pending designs

• For long trips, 2x possible paths:

Economically and environmentally, fast charging makes sense

Technical reminder:

C-rates, heat generation & immersion cooling

• What is « C-rate » for a battery ?

 $C-rate = \frac{Power}{Energy} = \frac{Current}{Capacity} = \frac{A}{Ah} [h^{-1}]$

 \rightarrow Ex: 4C means ¼ hour charging time for 100%

• How C-rate impacts the heat generation?

Joule heating due ohmic resistance: *Heat* = *Resistance* x *Current*²

 \rightarrow Ex: 4C charge heats 4x more than 2C

Current battery cooling systems cannot absorb so much heat

$\Xi \times O \Xi \Xi$ Representative testing of improved cooling system

What is immersion cooling?

- A sealed battery flooded with a dielectric fluid in direct contact with the cells
- Thermal runaway propagation is prevented
- Low consumption of cooling system (pump & chiller)
- Cooling of busbars

We developed a specific battery module cooled by immersion with prismatic hard-case cells

- 2.2 kWh
- Fully instrumented
- To validate :
 - 1. Cooling performance
 - 2. Fast charging capability
 - 3. Safety behavior during a cell thermal runaway

Module design and flow path

- 50Ah NMC523 prismatic cells 2p6s
- All cells are hydraulically in parallel with common inlet and outlet manifolds
- U-shape flow along the wide faces of cells
- 1.5mm space between cells for fluid circulation
- quantity of fluid in the module : ~1.2L (25% of cell volume)
- Designed for hydrocarbon-based coolant

- HTC x Surface_{cooled} x $\Delta T_{\text{fluid to cell}} = Heat_{cells \& busbars}$
- The Heat Transfer Coefficient (HTC) is highly dependent on flow rate
- A higher temperature lightly increases HTC on the range 15-25°C
- C-rate has a visible influence on HTC (mean fluid temperature increase with C-rate)

With this battery design & fluid Up to 150W/m²/K Heat transfer of Lubrizol fluid

• 1L/min

HTC [W/m²/K]

200 25°C 150 25°C 25°C 15°C 25°C 100 25°C 25°C 25°E 25°C 25°C 50 15°C 25°C 0 170 200 230 260 290 320 350 380 Current [A] Data are courtesy of **Lubrizol**

• 3L/min • 6L/min

8

Immersion reduces the battery thermal resistance for better cooling:

Cold plate cooling:

Immersion cooling:

Thermal resistance typ. <u>0.8 K/W*</u> & busbar not cooled

Thermal resistance typ. <u>0.2 K/W*</u> & hot spots cooling

Immersion cooling is an enabler of fast charging

*: Calculated on prismatic cell – PHEV2 format

Real driving assessment: Fast charge + US06 (EPA)

Test conditions:

- Initial temperature 40°C
- 3.5C charge from 5 to 65% (~10min)
- Cooling at 6L/min and 25°C
- Followed by a US06 cycle

Results:

- max cell temp. <53°C
- max busbar temp. <50°C
- max ΔT on cells <10K
- duration above 35°C <23min

3.5C charge accessible with immersion cooling &
No active cooling required during normal driving

EXOES

Assessment of the propagation of a thermal runaway thanks to a nail penetration test (NPT)

Module terminals

EXOES PROPERTY - NEV SHANGHAI December 1st-3rd 2021

$\Xi \times O \equiv \Xi$ The cooling prevented the fire propagation

- Punctured cell temp. increased up to 400°C in 20s after the vent break.
- Constant flow rate @6L/min
- Adjacent cell temp. increased up to 92°C within 150s

No propagation to the adjacent cell

Large face center & bottom temperature,

The adjacent cell suffered but did not burn

- Adjacent cell partially discharged in the punctured cell until its internal fuse melt
- Gases were generated in the cell leading to swelling

Battery design to be improved for greater robustness

Cell#	Electrical continuity	Voltage* [V]	Mass [g]	Swelling [mm]	
1	yes	0	758	+8/-7	
2	no	0	870	+12	
3	no	3.1	863	+0	
4			862	+0	
5		3.1	866	+0	
6			863	+0	
7		3.1	864	+0	
8			864	+0	
9		3.2	865	+0	
0			861	+0	
1		3.1	863	+0	
2			861	+0	

Lots of ashes

Puffy adjacent cell

Data are courtesy of **Lubrizol**

* measured after a complete discharge process and a several days of relaxation

- We have demonstrated that immersion allows:
 - Increased thermal performances
 - Increased safety levels
 - No extra cost nor weight compared to current battery designs

\rightarrow Immersion is a promising technology to enable fast charging

- The cooling fluid becomes a key component:
 - The fluid has to be:
 - Good heat-transfer fluid
 - Robust dielectric properties
 - Easily pumped at all temperatures
 - Safe: not flammable & environment friendly

Methods to be defined to select and characterize the fluid

- Avoid over-engineering due to engine oil or transmission standards (higher temperature / gears /...)
- Use standards from different domains (electric transformers / air compressors / ...)
- Specific tests to be built or methods to be adapted
- Define relevant accelerated aging test

THANK YOU FOR YOUR ATTENTION

Mr. WANG JUN China Sales Developer +86 158 0213 4341 wang.jun@exoes.com

Advanced Thermal System Solutions

Questions

Special thanks to Lubrizol for sharing data

